A Finsler metric of constant Gauss curvature K=1 on 2-sphere

نویسندگان

چکیده

We construct a concrete example of constant Gauss curvature $K = 1$ on the 2-sphere having all geodesics closed and same length.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geodesically Reversible Finsler 2-spheres of Constant Curvature

A Finsler space (M,Σ) is said to be geodesically reversible if each oriented geodesic can be reparametrized as a geodesic with the reverse orientation. A reversible Finsler space is geodesically reversible, but the converse need not be true. In this note, building on recent work of LeBrun and Mason [13], it is shown that a geodesically reversible Finsler metric of constant flag curvature on the...

متن کامل

A Metric of Constant Curvature on Polycycles

We prove the following main theorem of the theory of (r, q)-polycycles. Suppose a nonseparable plane graph satisfies the following two conditions: (1) each internal face is an r-gon, where r ≥ 3 ; (2) the degree of each internal vertex is q , where q ≥ 3 , and the degree of each boundary vertex is at most q and at least 2 . Then it also possesses the following third property: (3) the vertices, ...

متن کامل

On product spacetime with 2-sphere of constant curvature

If we consider the spacetime manifold as product of a constant curvature 2-sphere (hypersphere) and a 2-space, then solution of the Einstein equation requires that the latter must also be of constant curvature. There exist only two solutions for classical matter distribution which are given by the Nariai (anti) metric describing an Einstein space and the Bertotti Robinson (anti) metric describi...

متن کامل

Projectively Flat Finsler Metrics of Constant Curvature

It is the Hilbert’s Fourth Problem to characterize the (not-necessarilyreversible) distance functions on a bounded convex domain in R such that straight lines are shortest paths. Distance functions induced by a Finsler metric are regarded as smooth ones. Finsler metrics with straight geodesics said to be projective. It is known that the flag curvature of any projective Finsler metric is a scala...

متن کامل

Two-Dimensional Finsler Metrics with Constant Curvature

We construct infinitely many two-dimensional Finsler metrics on S 2 and D 2 with non-zero constant flag curvature. They are all not locally projectively flat.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of the Alexandru Ioan Cuza University - Mathematics

سال: 2021

ISSN: ['2344-4967', '1221-8421']

DOI: https://doi.org/10.47743/anstim.2021.00004